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Abstract
The general belief is that the NAV’s of the mutual funds take a random and unpredictable path and that it is
impossible to outperform the market without assuming additional risk. However, it is possible to outperform the
market by carefully selecting entry and exit points for equity investments. Chaos is a nonlinear, dynamic system
that appears to be random but is actually a higher form of order. All chaotic systems have a quantifying
measurement known as a fractal dimension. The fractal dimension index (FDI) is a tool that applies the principles
of chaos theory and fractals. With FDI one can determine the persistence or anti-persistence of any equity or
commodity. In this paper we study the data from mutual funds by computing the fractal dimension index. The
fractal dimension index is computed from the Hurst exponent, which is computed from Rescaled Range R/S.

Keywords: chaos, fractals, rescaled range, persistence.

1. INTRODUCTION

A time – series is a set of ordered observations
x1, x2, xi, xi  1, xn which are equally spaced over

time or space. A biased random time – series is
characterised by long term dependence or a “memory”
between observations. The events of one period
influence all the periods that follow. Rescaled Range
(R/S) analysis is a technique which is frequently applied
to real-time problems to detect any biases in behavior
over time. This method is used to find the memory
effect, otherwise known as persistence in the trends.
Rescaled Range Analysis (R/S Analysis) is a non
parametric methodology developed by H.E. Hurst, a
British hydrologist in 1951. He applied this methodology
to study the long-term storage capacity of reservoirs
and later it was extended to study many other natural
systems. This statistical methodology is generally used
for distinguishing random time series from biased
random time series (Fractal time series) and to study
the persistence of trends and also the presence of
periodic and non-periodic cycles in a time series.

2. History of Rescaled Range

British dam builder and hydrologist H.E. Hurst
(1900 – 78) worked on the Nile River Dam Project in
the early period of 20th century. In an effort to solve
a hydrological problem, Hurst searched for patterns in
the Nile Delta. The problem involved the storage
capacity of the dam reservoir. Most hydrologists
assumed that water inflow was a random process with

no underlying order. Hurst came to a different
conclusion after studying almost a

millennium of Nile overflows. He found that large
overflows tend to be followed by larger overflows.
There appeared to be cycles, but their lengths were
non-periodic and standard statistical analysis revealed
no patterns between observations.Hurst developed his
own analytical method to explain the non-periodic
cycles. To identify a nonrandom process, he tested the
Nile using Albert Einstein’s work on Brownian motion,
a widely accepted model for a random walk. Einstein
found that the distance a random particle travels
increases with the square root of time used to measure

it. This is called the T1/2 rule, and is commonly used
in finance and economics. Hurst divided the Nile data
into segments and examined the logarithmic range and
scale of each segment in comparison to the total
number of segments. This process is called re-scaled
range analysis. The range is re-scaled because it has
a zero mean and is expressed in terms of local
standard deviation.

The rescaled range value scales with an increase
in the time increment by a power-law value equal to
H, or the Hurst exponent. Using re-scaled range
analysis, Hurst showed that water overflows tended to
repeat, meaning that the natural overflows were
partially predictable. Then Benoit Mandelbrot used the
Hurst exponent to experiment with time series found in
cotton prices. He developed a method to measure
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irregular natural objects and named the measurement
the fractal dimension.

3. Chaotic systems
Chaos is present everywhere: in lightning,

weather patterns, earthquakes, and financial markets.
Though it may appear to be a random event, it is not.
Chaos is a nonlinear, dynamic system that appears to
be random but is actually a higher form of order.
Natural and Social systems, including private,
governmental, and financial institutions fall within this
category. People design these complex systems only
to find that these systems take on a life of their own.
Each of the system networks is sustained by complex
feedback, loops that re-enter the system at
unpredictable points in their cycles. These feedback
loops create an illusion of randomness.

In Chaos theory, we try to define an apparently
random event in the marketplace that has some degree
of predictability. In order to do this we need a tool that
is a representation of order from chaos. Fractal is the
tool that we will use here. The fractal is commonly
defined as an object with self-similar individual parts.
In the markets, a fractal can be thought of as an object
or “time series” that appears similar across a range of
scales. Markets look this way when we compare a 3
minute time scale to a 30 minute time scale and a 30
minute time scale to a 3 day time scale. Each frame
may zigzag a little differently, but when viewed from
afar they have similar attributes on each scale.

All chaotic systems have a quantifying
measurement known as a fractal dimension. The fractal
dimension is a non-integer dimension that describes
how an object takes up space. Objects in space are
infinitely complex. If we examine any object with a
microscope, more detail is revealed as the scale
changes. In addition to levels of detail, most objects in
nature demonstrate self-similarity, the organizing
principal of fractals

. Because of this, fractals will maintain their
dimension regardless of the scale used. This is evident
in natural phenomena such as mountains, coastlines,
clouds, hurricanes and lightning. Similarity across
scales is essential in trading, because each time frame
of a market will have a similar fractal pattern. This also
proves that markets are natural phenomena rather than
mechanical processes. Such markets can only be
forecasted reliably with principles applicable to

nonlinear, natural systems using Fractal geometry as
tool.

4. Fractal Dimension Index (FDI)
The fractal dimension index (FDI) is a tool that

applies the principles of chaos theory and fractals. This
specialized indicator identifies the fractal dimension of
the market by using re-scaled range analysis and an
estimated Hurst exponent. It does so by using all
available data on the time/price chart to determine the
“volatility” or “trends” of a given market. FDI is the
same type of tool used by eminent fractal scholars
Benoit Mandelbrot, H.E. Hurst, and Edgar Peters in
their examinations of time series analysis. With FDI we
can determine the persistence or anti-persistence of
any equity or commodity that we display in our
graphing program. A persistent time series will result
in a chart that is less jagged, subject to fewer
reversals, and resembles a straight line. An
anti-persistent time series will result in a chart that is
more jagged and prone to more reversals. Essentially,
FDI will tell us whether a market is a random,
independent system or one with bias.

The FDI is useful because it determines the
amount of market volatility. The easiest way to use this
indicator is to understand that a value of 1.5 suggests
that the market is acting in a completely random
fashion. As the market deviates from 1.5, the
opportunity for earning profits increases in proportion
to the amount of deviation. The entire scale is based
on a range of 1  2, suggesting extreme linearity to
extreme volatility. A great example that is often used
to describe the fractal dimension is its use in
geography. If we examine an island and plot the fractal
dimension, we will be able to determine how jagged
the edges of the island are for a particular
measurement scale. An island with a 1.7 fractal
dimension is highly jagged, with many more peaks and
troughs on the periphery. An island with a fractal
dimension of 1.3 is much more linear, approaching a
single dimension or a straight line. If we examine this
island on a map, the coastline will be straighter.

Because the price plot on chart will never be one
extreme or another, we need to measure the “fraction
of the dimension.” This is why the FDI number is a
fractal dimension. The farther away this dimension is
from 1.5, the more confident one can be that the
market is not random. When a market is not random,
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it is more predictable. If the FDI is closer 2, the
probability is higher that the next move will be in the
opposite direction of the current move. An FDI closer
to 1 signals a trending market in one direction.

This knowledge alone gives the trader an
incredible advantage, because it can indicate which
markets have the most opportunity. While trading a
basket of Forex markets, futures or stocks we certainly
do not want to include those markets near a 1.5 FDI.
If none are close to 1.5 we can still determine the
market(s) with the largest degree of “predictability” by
omitting those closer to 1.5.

Another postulate is the length of time necessary
for each data period. Some researchers believe that
shorter time periods, such as daily data, are subject to
more noise from random information. If this is the case,
FDI is less accurate with finer slices of sequential data.
The individual length of each period will come into play
as noise is filtered.

5. Computing the FDI
For computing the FDI one must first compute

the Hurst exponent. For a time series x1, 2, , , xn of
length n, Hurst computed the Rescaled Range (R/Sn)
and found that 

R/S n c nH ... (1)

where c and H are constants and H is the Hurst
coefficient.

log R/Sn  log c H log n ... (2)

Thus H is obtained as the slope of the Log
(R/Sn) versus Log (n) plot. H 0.50 implies that the
time series is a random time series and implies the
absence of long term statistical dependence. The case
0.50 H  1.00 implies a persistent time series, a
time series characterized by long memory effects. This
means that if the trend has been positive in the last
observed period, the chances are that it will continue
to be positive in the next period. Conversely if it has
been negative in the last period it is more likely that
it will continue to be negative in the next period. The
level of persistence is judged by how far H is above
0.5. Hurst has found that a number of natural
phenomenon such as river discharges, rainfall, sunspot
numbers and tree rings exhibit a Hurst coefficient H

with mean 0.73 and a standard deviation 0.09, showing
that past values influence the present values. The case
0 H  0.50 implies anti-persistent time series. An
anti persistent system reverses itself more frequently
than a random one.

The length n is now increased to the next higher
value, such that N  1 /n is an integer and then
R/S n is computed. The pairs of values log (n) and

are plotted in a graph sheet and the line of best fit
(given by equation (2)) is drawn. The slope H of this
line is the estimate of the Hurst coefficient.

After the computation of the Hurst exponent, we
derive the fractal dimension of the time series. This is
easily accomplished using the formula D 2 H   “2”is
used here because we are using two dimensions for
this computation. The value of “D” is the fraction of a
dimension between 1 and 2 that the price data
represents. Logarithmic returns are used to compute
FDI. Because logarithmic returns sum to cumulative
returns, most analyst agree that this is most appropriate
for financial analysis.

6. Correlation between periods:
The correlation CN between periods is calculated

as follows:

CN  2 2H  1  1

A random time series (H 0.5) has zero
correlation. A persistent time series (with H greater than
0.5) results in positive correlation where as an
anti-persistent time series results in negative
correlation. CN is a measure of the long-term memory

present in the time series. CN 0.25 implies that 25%
of the data is influenced by the past.

7. The V Statistic:
The V statistic

Vn
R/S n

n

was originally used by Hurst for testing stability. If the
process is an independent random process, then the
plot of V versus Log n will be flat. If the process is
persistent (H 0.5) then the graph will be upwardly
sloping and if the process is anti persistent (H 0.5)
the graph will be downward sloping.
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8. Data Analysis
The data for analysis is taken from six of the top

ten mutual funds for the time period Jan 2008 to Dec
2008.

1. Birla Sunlife Asset Allocation Aggressive

2. FT India life Stage FOF 20’s

3. Sahara Growth

4. UTI Contra

5. Escorts High Yield Equity

6. HDFC Top 200

Birla Sunlife Asset Allocation Aggressive

H 0.9196    CH  0.789 FD  1.0804

FT India life Stage FOF 20’s

H 0.9431    CH  0.8484 FD  1.057

Sahara Growth

H 0.9203    CH  0.7908 FD  1.078

UTI Contra

H 0.911    CH  0.7679 FD  1.089

Escorts High Yield Equity

H 0.948    CH  0.862 FD  1.052

HDFC Top 200

H 0.913    CH  0.774 FD  1.087

9. Final Result

No
Name of
Mutual
Fund

Hurst
constant

Correlation
between
period

Fractal
Dimension

Index

1 Birla
Sunlife
Asset
Allocation
Aggressive

0.919 0.789 1.0803

2 FT India
Life
Stage
FOF 20’s

0.943 0.848 1.057

3 Sahara
Growth

0.920 0.791 1.078

4 UTI
Contra

0.911 0.768 1.089

5 Escorts
High
Yield
Equity

0.948 0.862 1.052

6 HDFC
Top 200

0.913 0.774 1.087

10. Conclusion
From the study carried out on the six of the top

ten mutual funds, it was found out that All these mutual
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funds were highly persistent, which resulted in a chart
that is less jagged, prone to fewer reversal, resembling
a straight line and clearly fractals in nature. The plot
of Vn versus log n for these funds has upward slope

confirming its persistence and the correlation between
periods are positive indicating the presence of long
term memory. Since the FDI for all these mutual funds
are closer to 1, they are not random and the trending
market is predictable in one direction. It was also
observed that the mutual fund Escorts High Yield
Equity has the highest H value while UTI Contra has
the lowest H value. Therefore we can conclude that
EHYE is less risky than UTI Contra.
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